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Abstract 
The automation of important aspects of scientific data analysis would significantly accelerate the 
pace of science and innovation. Although there has been a lot of work done towards that 
automation, the hypothesize-test-evaluate discovery cycle is still largely carried out by hand by 
researchers.  This introduces a significant human bottleneck, which leads to inefficiencies, 
potential errors, and incomplete explorations of the hypothesis and data analysis space. We 
introduce a novel approach to automate the hypothesize-test-evaluate discovery cycle with an 
intelligent system that a scientist can task to test hypotheses of interest against a data repository. 
Our approach captures three types of data analytics knowledge: 1) common data analytic methods 
represented as semantic workflows; 2) meta-analysis methods that aggregate those results, 
represented as meta-workflows; and 3) data analysis strategies that specify for a type of hypothesis 
what data and methods to use, represented as lines of inquiry.  Given a hypothesis specified by a 
scientist, appropriate lines of inquiry are triggered, which lead to retrieving relevant datasets, 
running relevant workflows on that data, and finally running meta-workflows on workflow results.  
The scientist is then presented with a level of confidence on the initial hypothesis, a revised 
hypothesis, and possibly with new hypotheses. We have implemented this approach in the DISK 
system, and applied it to multi-omics data analysis. 

1.  Introduction 
The rate of data collection has vastly surpassed our ability to analyze it.  In science, massive 
amounts of data are already available in repositories, waiting to be analyzed [Tomczak et al 2015, 
Rudnick et al. 2016].  As these repositories are constantly growing, an analysis performed today 
may give different results when performed in the future. Data analytics expertise is not easily 
disseminated, and institutions have more data than experts to analyze it.  For example, in a recent 
survey of reviewers of Science magazine (which could be considered to be at the top of their 
field) a majority of respondents said that their lab did not have the necessary expertise to analyze 
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the data they already have [Science 2011].  The situation is likely worse for the vast majority of 
scientists, and in less privileged institutions and sectors.  Indeed, data analytic processes are 
currently carried out by hand by investigators, introducing a significant human bottleneck that can 
lead to erroneous and incomplete explorations, and hampers reproducibility [Begley and Ellis 
2012].  

The automation of important aspects of scientific discovery would significantly accelerate the 
pace of science and innovation. Although scientific discovery may involve complex 
representational and paradigm changes [Kuhn 1962], AI researchers have automated important 
aspects of discovery such as experiment design and testing [Kulkarni and Simon 1988; King et al 
2009] and induction of laws from given datasets [Langley et al 1987; Valdes-Perez 1997; 
Todorovski et al 2000; Schmidt and Lipson 2009]. Once a representation is chosen, discovery 
processes often involve searching through the space of possible hypotheses and models.   

Our goal is to develop an intelligent system able to conduct hypothesis-driven data analysis of 
science data repositories. In many science domains, comprehensive data repositories are being 
developed with large amounts of diverse data.  Given the necessary knowledge and methods, an 
intelligent system could autonomously analyze the data in a systematic, comprehensive, and 
efficient manner [Buchanan and Waltz 2009; Gil et al 2014]. Automating data analyses would 
also enforce consistency, as they would follow processes recognized by experts in the field of 
study.  In addition, automation would facilitate inspectability and reproducibility of results. 

In this paper we introduce a novel approach to automate the hypothesize-test-evaluate 
discovery cycle by capturing data analytics expertise and applying it to automatically test given 
hypotheses against existing data repositories.  Our approach captures three types of data analytics 
knowledge: 1) common data analytic methods that can each be run on different types of data, 
represented as semantically-enriched computational workflows; 2) meta-analysis methods that 
aggregate disparate results from different data analysis methods, represented as meta-workflows; 
and 3) data analysis strategies that specify for a given type of hypothesis what kind of data to 
retrieve from the repository and methods (workflows, meta-workflows) to use, represented as 
lines of inquiry. Given a hypothesis specified by a scientist, appropriate lines of inquiry are 
triggered, which lead to retrieving relevant datasets, running appropriate workflows on that data, 
and finally running meta-workflows on workflow results.  The final report generated includes a 
revised (possibly new) hypothesis based on the data and methods applied, and a detailed 
provenance record of the results that can be used to reproduce the work. 

We have implemented this approach in the DISK framework, and used it for multi-omics data 
analysis. A key capability of DISK is the ability to capture of data analysis expertise in semantic 
workflows that can be automatically elaborated in the existing WINGS intelligent workflow 
system [Gil et al 2011a; Gil et al 2011b].  For a given domain, DISK is given a data catalog that 
describes the data repository in terms of metadata of its individual datasets using domain 
ontologies.  In addition, DISK is pre-populated with workflows, meta-workflows, and lines of 
inquiry for the domain at hand, all described using ontologies that are consistent with the 
metadata in the data catalog.  DISK automatically captures the provenance of the results, which 
can be used to generate appropriate explanations of new findings to scientists and to reproduce 
the results.  
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Major research contributions of this paper include a representation of common lines of 
inquiry that test hypotheses against data repositories, semantic workflows to capture common 
data analysis methods, and meta-reasoning strategies to aggregate data analysis results.  

The paper begins with an overview of our approach, followed by a description of its 
implementation in the DISK system.  We then present an initial evaluation with a functional 
prototype for the multi-omics domain. We conclude with a discussion of future lines of work. 

2.  An Opportunity in Multi-Omics Data Repositories for Cancer 
Despite great advances in our ability to discover genomic abnormalities, the relationship between 
the genome and the functioning or malfunctioning of cells remains poorly understood [Ritchie et 
al 2015]. Multi-omic analysis enables the study of the genome (genomics data), its products 
which include expressed RNAs and proteins (transcriptomics and proteomics data respectively), 
and how those products interact amongst themselves and with the genome to drive cell behavior 
(phenotypic data). Understanding these relationships is crucial to uncover the mechanisms that 
lead to cancer and other diseases. 

Projects like The Cancer Genome Atlas (TCGA) [Tomczak et al 2015] and the associated 
Clinical Proteomic Tumor Analysis Consortium (CPTAC) [Rudnick et al. 2016] are creating large 
repositories of omics data that are rapidly approaching more than a petabyte of data. The data is 
collected in a defined, and relatively uniform way at dozens of sites for thousands of patients with 
different types of cancer. The data include diverse omics data, such as multiple types of genomic 
data (DNA sequencing, RNA transcriptomics, epigenetic) and proteomics, as well as pathologic 
data from biopsy (H+E), radiomic data (CT, MRI), and extensive clinical annotations.  Though 
efforts have been made to minimize experimental variation, each type of data may be collected by 
a variety of approaches and from site-to-site on different types of instruments and through 
different (but standardized) protocols. For example, protein expression data may be collected in 
some cases through mass spectrometry (which is more expensive but more accurate) and in others 
through fluorescence and microarray experiments (more inexpensive but less accurate). Likewise, 
mass spectrometric datasets may be collected using TMT approaches at one center and spectral-
counting approaches at another.  An important feature of TCGA and CPTAC is that metadata 
regarding how samples were processed and what measurement modalities were used is available. 
The availability of these fairly complete and well-annotated datasets is a key enabler for 
investigating automating discovery from data repositories. 

Although comprehensive data repositories such as TCGA and CPTAC are the target of a wide 
range of omics research, the analysis is occurring slowly and piecemeal.  Different labs have 
expertise in specific types of data (e.g., one lab in genomics, another in proteomics), and 
consequently they each analyze narrow slices of the data available.  In addition, analyses that use 
several types of omics data are infrequent, as they involve several labs and take several years to 
complete (e.g., [Zhang et al 2014; TCGA 2014]). Each type of omics data requires the use of 
several interconnected software tools, and each of them may require substantial domain 
knowledge. For example, a tool for clustering genomics data may have a parameter whose value 
is set based on the error rates of the microarray instrument used to collect the data. An analysis 
method for proteomics data collected through mass spectrometry may involve several tools, each 
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with dozens of such constraints. The situation is exacerbated as new approaches published in the 
literature constantly expand the possible methods for data analysis and offer alternative 
approaches to gather evidence from data. Each lab uses some subset of the available algorithms 
and methods given their resources and expertise. 

A major issue is the limited reproducibility of omics studies.  Each lab has their own methods 
and associated software stack and infrastructure to carry out the analyses.  Studies are not easily 
reproducible based on what is described in published articles [Ioannidis et al 2009]. In addition, it 
is not unusual that different analytic methods lead to vastly different results (e.g., [O’Rawe et al 
2013]).  This suggests a lack of consistency on how methods are applied, and that reproducibility 
and cross-comparison of methods should be commonplace. 

The seminal multi-omics analysis in [Zhang et al 2014], mentioned above, was a study of 
colon cancer through genomics and proteomics data that confirmed the role of some known 
proteins and uncovered additional ones. These kinds of studies offer a watermark for our work, as 
we can develop intelligent systems that aim to emulate such discoveries by capturing substantial 
amounts of analytic knowledge that is not easily harness to conduct new analyses. It would also 
be exciting to the cancer omics community to see such analyses become transparent and 
reproducible. 

3.  A Framework for Automated Hypothesis Testing with Data Repositories 
Our aim is to design a framework for automated hypothesis testing based on the kinds of 
knowledge that experts express in exploring, testing, and revising hypotheses.  
 Our approach is to capture general data analysis strategies that scientists would follow to test a 
given hypothesis.  This includes knowledge for finding appropriate datasets in the data repository 
that are relevant to the hypothesis at hand, the data analysis methods that should be applied to all 
the datasets available, and meta-analysis methods that examine those results and synthesize an 
overall assessment of the initial hypothesis.  These general data analysis strategies tend to be very 
prescriptive in terms of the major steps to be carried out, with the details being sorted out to suit 
the data and hypothesis at hand.  Many aspects of our approach can be seen as a form of skeletal 
planning, where major steps of the process are explicitly stated at a high level and constraint 
reasoning is used to specialize the steps to suit the given problem [Friedland and Iwasaki 1985]. 
 A key novel contribution of our work is to capture computationally the end-to-end scientific 
methods to test classes of hypotheses.  While there are many machine learning methods to 
analyze a given dataset, they do not address how to find the data to be analyzed. Also, each 
machine learning method is one approach to do analysis, and a significant part of the end-to-end 
analysis process is to figure out which machine learning methods should be applied to the data at 
hand. 
 We describe our approach in two stages. First we introduce basic concepts and types of 
knowledge captured in our framework, giving examples from multi-omics data analysis. Then we 
describe the core algorithm and the role of each type of knowledge in its reasoning steps. In the 
next section, we describe our implementation of this approach in the DISK system and after that 
we show preliminary results and examples in multi-omics data analysis. 
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We first introduce some terminology that will be used through the paper.  A computational 
workflow, or workflow for short, defines the interconnected tasks that are needed to carry out a 
computational experiment [Taylor et al 2007]. Figure 1 shows an example of a workflow to detect 
copy number variants, from the work in [Gil et al 2013].  A workflow has inputs, which can be 
data or parameters, and produces intermediate results and outputs.  The workflow in the figure 
processes genomics data and uses an ensemble of three well-known CNV detection algorithms 

 
Figure 1. An example of a genomics workflow for copy number variant detection (from the 

work in [Gil et al 2013]).  Data is shown in ovals (inputs in lighter color), and computational 
analytic steps are shown as rectangles.  
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(Gnosis, PennCNV, and QuantiSNP), then compares the findings with known CNVs and 
annotates those that are novel. Workflow inputs are variables that can be given bindings to 
specific datasets in order to create an execution-ready workflow. For example, the workflow in 
Figure 1 can be used for data from a specific genome (e.g., a patient) to create an execution-ready 
workflow that can be run.  Unification is a process to match ground literals against variabilized 
expressions, resulting in a set of bindings for the variables to the constants in the ground literals. 

3.1  Representing Hypotheses 

A hypothesis h consists of:  
 

1. A hypothesis statement, which is a set of assertions about entities in the domain.  For 
example, they express assertions such as “The mutant form of Protein ABCD is 
associated with colon cancer.” 

2. A hypothesis qualifier, which qualifies the veracity of the hypothesis based on the data 
and the analyses done so far.  A typical qualifier is a numeric confidence value.  For 
example, for the hypothesis statement above we could have a confidence value of 0.7. 

3. A hypothesis provenance, which is a record of the analyses that were carried out to test 
the hypothesis statement.  For example the provenance may include an analysis of mass 
spectrometry data for 25 patients with colon cancer and 25 healthy controls followed by 
clustering, cluster metrics and binary hypothesis testing. 

4. A hypothesis history, which points to prior hypotheses that were revised to generate the 
current one.  In our example, a prior hypothesis could have a statement such as “Protein 
ABCD is associated with cancer.” 

 
An appropriate language to represent each of these constituents should be chosen to fit the 

domain.  We describe in the next section our work on representing hypothesis in DISK for the 
multi-omics domain. 

3.2  Representing Lines of Inquiry 

A line of inquiry represents potential analyses that can be pursued to test a type of hypothesis.  A 
line of inquiry consists of: 
 

1. A hypothesis pattern, which represents the type of hypotheses that can be explored with 
this line of inquiry.  An example of a hypothesis pattern is “Protein ?p is associated with 
cancer ?c”.  This hypothesis pattern must be expressed in the same language as 
hypothesis statements, so that they can be matched against a user’s hypothesis. 

2. A set of query patterns, representing the kinds of data relevant to testing the hypothesis 
pattern as a set of templates of queries to a data repository.  Several kinds of data may be 
relevant, so there may be several query patterns.  For example, “Retrieve data of mass 
spectrometry experiments of tumor samples from patients with cancer ?c”.   

3. A set of workflows, which are procedures that capture data analysis methods that are 
applied to the data retrieved by the query patterns in order to test the hypothesis pattern.  
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For example, a workflow to analyze mass spectrometry data could include steps such as 
matching proteins from either a patient’s custom database or on a reference human 
proteomic database to tandem mass spectrometry data. 

4. A set of workflow mappings, indicating how the query patterns and the datasets retrieved 
should be used to instantiate the workflows above to create execution-ready workflows.   

5. A  meta-workflow, which describes how to aggregate the results of each of the workflow 
executions done to analyze the data, and return a revised hypothesis statement as a result.  
For example, suppose that one of the workflows in the line of inquiry is for analyzing 
protein mass spectrometry data for n patients finding evidence for the protein ?p with a p-
value p1 and another workflow is for protein fluorescence data for m patients giving a p-
value p1, then the meta-workflow would indicate how to combine that evidence into a 
joint confidence value. 

6. A meta-workflow mapping, which describe how the results of the workflow executions 
are to be used to generate bindings for the inputs of the meta-workflow. 
 

Our work makes two important assumptions.  First, we assume that the lines of inquiry are in 
a total order. This is necessary so that for any hypothesis statement we are guaranteed to be able 
to select only one line of inquiry to pursue, which is the one ranked highest. If this assumption is 
relaxed and we allow a partial order, further meta-reasoning mechanisms would be needed to 
manage several lines of inquiry. 

A second assumption that we make is that there is only one meta-workflow in each line of 
inquiry, and its output is a revised hypothesis statement with an associated qualifier (e.g., a 
confidence value). If this assumption is relaxed and we allow more than one meta-workflow, then 
our approach would need to be extended so that it would be clear how the results of different 
workflows would be combined to revise the initial hypothesis.   

Lines of inquiry capture important knowledge to select data, analyze it, and synthesize a 
result.  They orchestrate data retrieval, data analysis, and meta-reasoning processes.  The 
incorporation of these types of knowledge and processes is a major novel aspect of our 
framework. 

3.3  An Algorithm for Autonomous Hypothesis Testing 

Table 1 gives a high-level overview of our algorithm for automated hypothesis testing with a data 
repository.  Given a hypothesis, a knowledge base composed of lines of inquiry, a data repository, 
and a set of computational resources that limit the amount of analysis that is possible, the 
algorithm returns a revised hypothesis that may change the initial hypothesis statement (e.g., by 
making it more specific) or change its initial confidence value.   
 Initially, the hypothesis provided can just contain a hypothesis statement, which gets refined by 
the algorithm, and can be refined again over new iterations of the algorithm as new data or 
methods become available.  Our framework is designed so that this algorithm can be iterated over 
time with a set of standing hypotheses of interest.  As new data becomes available in the data 
repository, new analyses can be run which result in updates to the confidence value and the 
evidence associated with each hypothesis. 
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4.  DISK: Automated Hypothesis Testing with Large Data Repositories 
We have developed the DISK (Automated DIscovery of Scientific Knowledge) system, which 
implements our approach. Figure 2 gives an overview of the components of DISK. In this section, 
we describe the representation of hypotheses, and their evaluation through lines of inquiry that 
include analytic workflows and meta-workflows.  The workflows have semantic constraints that 
are used in the WINGS workflow system to automatically configure the workflows to the data at 
hand.  There is an Interactive Discovery Agent component that that generates explanations for the 
user about the findings of the system.  

4.1  Hypotheses in DISK 

We use graphs of entities and relations to represent hypotheses. Graphs represent the hypothesis 
statement, qualifier, provenance, and history, as well as the interconnections among them.  We 
use OWL and RDF [W3C 2014], both W3C semantic web standards widely used in biomedical 
research.  These representation languages enable nested graphs so that a provenance graph can be 
attached to a hypothesis statement graph, as can the hypothesis qualifiers and history graphs. 
 Figure 3 illustrates our hypothesis representation with an example.  The hypothesis statement 
indicates that the PRKCDBP protein is expressed in a patient’s sample, one of the many samples 
that have been analyzed in the lab with results available in TCGA. The hypothesis was tested with 
two workflows (W1 and W2), using the dataset TCGA-AA-3561-01A-22 obtained from the 
patient’s sample and described with the assertions shown at the bottom of the figure.  The results 
of W1 and W2 were analyzed with meta-workflow M1, and that becomes the provenance of the 
hypothesis.  The analysis concluded that the confidence on the hypothesis is 0.2, which becomes 
part of its qualifiers. The history is not illustrated in the figure, but it is also expressed as a graph.   

Table 1. High-Level algorithm for autonomous hypothesis testing against a data repository. 
 
Given:	
  	
  
	
  	
  	
  	
  	
  -­‐	
  A	
  hypothesis	
  H	
  =	
  {Hstat,	
  Hqual,	
  Hprov,	
  Hhist}	
  
	
  	
  	
  	
  	
  -­‐	
  A	
  ranked	
  list	
  of	
  lines	
  of	
  inquiry,	
  each	
  as	
  LOI	
  =	
  {Hpatt,	
  Qpatts,	
  W,	
  Wmapps,	
  M,	
  Mmapps}	
  
	
  	
  	
  	
  	
  -­‐	
  A	
  data	
  repository	
  DR	
  
	
  

Return:	
  H’	
  =	
  {H’stat,	
  H’qual,	
  H’prov,	
  H’hist}	
  as	
  a	
  revised	
  hypothesis	
  for	
  H	
  
	
  

Do:	
  
	
  	
  	
  1.	
   Match	
  Hstat	
  in	
  H	
  against	
  Hpatt	
  in	
  every	
  LOI,	
  and	
  of	
  those	
  that	
  match	
  select	
  the	
  one	
  with	
  the	
  highest	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  ranking,	
  return	
  a	
  set	
  of	
  bindings	
  BH	
  for	
  the	
  variables	
  in	
  Hpatt	
  to	
  the	
  constants	
  in	
  Hstat	
  of	
  the	
  selected	
  LOI	
  
	
  	
  	
  2.	
   Instantiate	
  the	
  query	
  patterns	
  Qpatts	
  using	
  the	
  bindings	
  B

h,	
  returns	
  a	
  set	
  of	
  instantiated	
  queries	
  {Q}	
  
	
  	
  	
  3.	
   Query	
  the	
  data	
  repository	
  DR	
  using	
  {Q},	
  return	
  a	
  collection	
  of	
  datasets	
  {D}	
  for	
  each	
  query	
  as	
  {Q,	
  D}	
  
	
  	
  	
  4.	
   For	
  the	
  input	
  data	
  to	
  each	
  workflow	
  in	
  W	
  use	
  Wmapps	
  and	
  {Q,	
  D}	
  to	
  generate	
  bindings	
  B

W,	
  return	
  a	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  set	
  of	
  execution-­‐ready	
  workflows	
  {WE}	
  
	
  	
  	
  5.	
   Run	
  all	
  workflows	
  in	
  {WE},	
  add	
  the	
  provenance	
  records	
  PW	
  to	
  H’prov	
  
	
  	
  	
  6.	
   For	
  the	
  input	
  data	
  to	
  each	
  meta-­‐workflow	
  in	
  M	
  use	
  Mmapps,	
  Hpatt,	
  and	
  P

W	
  to	
  generate	
  bindings	
  BM,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return	
  an	
  execution-­‐ready	
  meta-­‐workflow	
  ME	
  
	
  	
  	
  7.	
   Run	
  the	
  execution-­‐ready	
  meta-­‐workflow	
  ME,	
  add	
  the	
  provenance	
  records	
  PM	
  to	
  H’prov	
  
	
  	
  	
  8.	
  	
  	
  Using	
  the	
  results	
  of	
  ME	
  create	
  H’stat	
  and	
  H’qual,	
  link	
  H	
  to	
  H’hist,	
  return	
  a	
  revised	
  hypothesis	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  H’	
  =	
  {H’stat,	
  H’qual,	
  H’prov,	
  H’hist}	
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 We use the W3C PROV standard [Moreau et al 2013] to capture how the hypothesis is 
supported by the analysis.  For example, we use it to express that a workflow used some data as 
input that a workflow execution was used by a meta-workflow, that a confidence report was 
generated by some meta-workflow, etc.  We also use W3C PROV to represent the hypothesis 
history, which captures the chain of events leading to a hypothesis revision.  For example, we use 
it to express that a hypothesis was a revision of another, a value was generated by some activity, a 
workflow used some data as input, etc. 

4.2  Workflows in DISK 

DISK uses WINGS [Gil et al 2011] to represent data analytic workflows. WINGS is an intelligent 
workflow system that uses semantic representations to describe the constraints of the data and 
computational steps in the workflow. WINGS can reason about these constraints, propagating 
them through the workflow structure and use them to validate workflows.  WINGS can run 
workflows on the Pegasus/Condor [Deelman et al 2005] or Apache OODT [Mattmann et al 2006] 
execution environments that can handle large-scale distributed data and computations. An 
example of a workflow in WINGS was shown in Figure 1. 
 

 

 
Figure 2. Major components of DISK 
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4.3  Meta-Workflows in DISK 

DISK uses WINGS also to represent meta-workflows. A meta-workflow has as inputs several 
workflow executions and compares them to generate an overall confidence value for the 
hypothesis.  Our initial meta-workflows use simple weighted combinations of workflow results.  
We are creating meta-workflows that use benchmark datasets to learn how to assign these 
weights.  Combining results from multiple sources of evidence and multiple methods is a very 
challenging aspect of multi-omics data analysis. 

4.4  Lines of Inquiry in DISK 

Lines of inquiry represent general strategies for exploring a hypothesis. Figure 4 shows an 
example of a line of inquiry.  This line of inquiry is for testing whether a protein ?p is expressed 
in a sample ?sample.   This is shown in line 1 of the query in the figure.  To test this, a query to 
the data repository must be submitted to ask for experiments ?ex1 and ?ex2 done with ?sample 
that produced mass spectrometer data and RNASeq data respectively.  The results of this query 
would be ?data1 and ?data2.   

 

 
 

Figure 3. Representing hypotheses in DISK.  The hypothesis graph is annotated with a qualifiers 
graph, a provenance graph.  A history graph, not shown here, annotates hypothesis revisions. 
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Those datasets are then used 
to run two workflows as the 
figure indicates: a 
proteogenomic analysis and a 
basic proteomics analysis.  The 
proteogenomic analysis 
workflow will use both ?data1 
and ?data2, and in addition 
requires comparisons with the 
reference human protein 
sequence database.  The line of 
inquiry specifies that the 
workflow should use the latest 
builds of that database, indicated 
as hg19.fa and 

_20151216_ML_default_HUM
AN_FAST_Fractions.xml.  

These all provide bindings for 
the workflow.  The basic 
proteomics analysis only uses 
?data1, the mass spectrometer 
data. Finally, a meta-workflow 
(shown at the bottom) analyzes 
the results of those two 
workflow runs, RunId1 for the 
proteomics workflow and 
RunId2 for the proteogenomics 
workflow.   

4.5  Generating Explanations from Provenance Records 

Provenance records are crucial to generate explanations to the scientist, and are a key component 
of the DISK Interactive Discovery Agent. DISK captures detailed aspects of provenance. 
Provenance is captured for hypothesis statements, as was shown in Figure 3, recording what 
workflows and meta-workflows were executed to generate confidence values.  Provenance is also 
recorded in terms of hypothesis evolution, where DISK records new versions of the hypothesis 
that result when new data (or new workflows) become available.  Finally, provenance is also 
recorded for workflow executions. Workflow provenance is captured automatically by WINGS 
and stored in an open repository as linked data [Garijo and Gil 2011], which makes the workflow 
accessible to others as a collection of web objects inputs, selected parameters, software 
components, and final results so they can be reproduced by others.  

All the concepts and relationships necessary for the representation of hypotheses and lines of 
inquiry are represented in ontologies, and are available at a persistent site [Garijo et al 2016].  

 
Figure 4. A line of inquiry in DISK to test hypothesis about 
whether a protein is expressed in a patient’s sample. 
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5.  Preliminary Evaluation 
Our preliminary evaluation focuses on the following hypothesis about our approach: Automated 
hypothesis testing will get comparable results to manual analyses done by experts. The results 
will be comparable because our framework captures expert knowledge to select data and methods 
for analysis and to combine the results.  

To evaluate this hypothesis, we replicated significant portions of the comprehensive analyses 
performed by the CPTAC team and reported in [Zhang et al 2014].  In that article, genomics and 
proteomics data were used to find evidence of specific proteins appearing in colon cancer 
patients.  Multi-omic analysis is often able to reveal mechanisms that cannot be detected from 
gene sequencing data alone as most cellular behavior is controlled by proteins.   

The initial hypothesis given to DISK was that Protein kinase C delta-binding protein 
(PRKCDBP) is expressed in a specific patient sample.  More advanced hypotheses involving 
multiple proteins and multiple patient samples require large-scale computational resources to run 
the analysis workflows.  This simpler hypothesis allowed us to demonstrate that our lines of 
inquiry, workflows, and meta-workflows can replicate the results of the original study. 

The formal representation of the hypothesis in DISK is: 
       <bio:PRKCDBP hyp:expressedIn tcga:TCGA-AA-3561-01A-22> 

The prefixes indicate that the entities are described in different ontologies: expressedIn is in 
the hypothesis ontology, the sample data is in the TCGA ontology, and the PRKCDBP protein is 
in the general biology ontology. 

The hypothesis was matched against the available lines of inquiry.  The most specific line of 
inquiry matched is the one that is shown in Figure 4.  When our hypothesis matched the line of 
inquiry shown above, the query to the data repository returned a binding of ?data1 to TCGA-AA-
3561-01A-22_Proteome_VU_20120808.zip and of ?data2 to TCGA-AA-3561-01A-22-2150-27.zip. 

Figure 5 shows the triggered line of inquiry on the top left, showing the matched hypothesis, 
the bindings for the two workflows and the meta-workflow.  The right side of the figure shows 
the proteogenomics workflow executed in WINGS, and a small diagram of the meta-workflow 
run.  Notably, the first workflow initially found the hypothesis to be false.  However, the second 
workflow supported a revised hypothesis in which a mutant form of PRKCDBP is present in the 
sample.  The associated confidence value is higher in the revised hypothesis.  The fundamental 
difference between these workflows was in the use of patient-specific sequencing data in 
evaluating a hypothesis.  The proteomics workflow only uses a reference database, whereas the 
proteogenomics workflow uses patient-specific data.  Notably, the inclusion of this additional 
data was able to validate a revised hypothesis, whereas the standard proteomics workflow would 
have invalidated the hypothesis. 

We wanted to demonstrate that DISK is able to achieve comparable results to the analyses 
done by the original authors.   To quantify similarity or difference, we looked across a range of 
levels. First, we verified that when running the same tools as the manuscript on identical data 
sources that results are identical. Next we investigated how subtle variations on tools (e.g. 
replacing tools with synonymous tools X! vs Myrimatch) impact results.  Specific points for 
evaluation included peptide identifications, protein quantifications, and proteomic/transcriptomic 
correlations.   As expected, synonymous tool substitution led to a non-trivial change in results and 
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Figure 5. A line of inquiry triggered in DISK to test a hypothesis, showing two workflow runs 

(bottom) and a meta-workflow’s revision of the hypothesis confidence (top right). 
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in support for various hypotheses.  These findings further suggest that in accepting a hypothesis, 
it may be important to explore a variety of possible workflows within a given line of inquiry.  
 From a biological perspective, among the most exciting capabilities of the system is to learn 
novel relationships from the data.  In the analysis published in [Zhang et al 2014], several key 
observations emerged regarding genome mutations that were detectable in expressed proteins. As 
discussed above for one example, we were able to verify that those conclusions could have been 
made using DISK.  
 A detailed record of the ontologies, lines of inquiry, workflows, results, and provenance 
described here are available at a permanent site [Garijo et al 2016]. 

6.  Related Work 
Cognitive scientists and philosophers of science have documented discovery processes (e.g., 
[Kuhn 1962; Craver and Darden 2013; Chandrasekaran & Nersessian 2015]), but these processes 
have not been automated to date.  Specific aspects of discovery such as mining laws from a pre-
selected homogeneous dataset have been automated (e.g., [Langley et al 1987; Valdes-Perez 
1997; Todorovski et al 2000]), and such approaches could be steps of the analytic methods in our 
proposed approach. There is some pioneering research on autonomous discovery systems that 
define a broader search for hypotheses [Lenat 1977; Lindsay et al 1980].  None of that work 
combines complex methods that analyze multiple kinds of data and combine the results as we aim 
to do in our work.  The most related work is on automating the experimentation cycle [King et al 
2009]. This work includes hypothesis formulation, hypothesis testing through physical 
experiments, and revision of hypothesis from observation of the experiment results.  That work 
focuses on the physical execution of experiments but uses simpler data analysis than DISK does. 
 Several workflow systems are used for scientific applications [Taylor et al 2007]. They focus 
on capturing low-level mechanics of how to run at each step, rather than on reasoning. 
 Other relevant research includes representations of hypotheses extracted from the published 
literature, as they use a graph-based representation.  These include EXPO [Soldatova and King 
2006] and nanopublications [Groth et al 2010]. However, these models assume that a hypothesis 
is a static entity as it is in a published article. In our work, a hypothesis is a dynamic element that 
may have multiple revisions and may be composed of multiple assertions each with their own 
provenance. Our representation introduces terms to describe evolving hypotheses and evidence.  

7.  Conclusions and Future Work 
As data repositories continue to grow, this disparity between data collection and data analysis 
rates will continue to worsen unless innovative approaches are taken. Our approach is to automate 
the hypothesize-test-evaluate discovery cycle with an intelligent system that captures complex 
data analytic knowledge as data analytic workflows, result aggregation meta-workflows, and 
hypothesis-relevant lines of inquiry.  Given a hypothesis provided by a scientist, relevant lines of 
inquiry are triggered which specify what data are relevant, what analytic methods to run, and the 
methods to aggregate those results. A revised hypothesis is presented back to the scientist, 
including a level of confidence based on the data and methods applied as well as a detailed 
provenance record that can explain the findings.  We have implemented this approach in the 
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DISK framework, and used it in cancer multi-omics to reproduce the results of a seminal article. 
We are studying the use of our approach in other domains of interest. 
 Another important area of future work is to address the combinatorial nature of the exploration 
space.  Many lines of inquiry may be triggered, many datasets may be relevant, and many data 
analysis methods may be possible.  Given limited computational resources, lines of inquiry could 
be extended with prioritization strategies based on domain heuristics.  The automatic analysis of 
large data repositories will raise many such scalability challenges. 
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